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The limited purpose of this paper is to discuss a few aspects

of finite dimensional numerical ranges and numerical radii • There is

no attempt to cover the entire field which has expanded in recent

years almost beyond recognition . The aspects involved are merely

those relating to the author ’s work in the pe st five years .

The paper consists of two parts: The first (Sections 1. - 3)

discusses properties of the classical numerical range and the corres-

ponding numerical radius; the second (Sections 11 - 6 ) is devoted to

C-ranges and C-radii which are generalizations of the classical

concepts .

Regrettably, we treat only a fraction of the finite dimensional

theory . The omitted material includes topics concerning the classical

range , as well as interesting generalizations due to Givens (19],

Beuer (2) ,  Marcus [38], Saunders and Schneider[49], and others .

The ranges and radii we treat here are associated with n X n

matrices operating on ç

fl~~ Although the infinite dimensional aspect s

are neglected , many (but not all) of the mentioned results hold for

linear operators on arbitrary Hu bert spaces as well • For the theory

in general spaces the reader is referred to the thorough texts by

Bon~a1]. and Duncan (6 , 7] .

1. ~~~~~~~~~~~~~~~~

The classical numerical range of a complex matrix A €

(often called the field of values) is the compact set
t

W (A) — f (Ax ,x) : x € 
~~~, lxi i) • 

*

Here (x ,y) and ix~ are the standard inner product end norm
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defined by

(x ,y) x*y and x l  = (x ,x)~~’2

The first to study W(.A ) was Toeplit z (52 ] who showed that

the boundary, aW( A), is a convex curve . A year later Hausdorf f

[32 ] obtained the following celebrated result known as the Toeplitz-

Hausdorif theorem.

THEOREM 1.1 . The numerical range is a convex set in the complex

plane.

Different proof s of the theorem can be found in (32 , 55, 50, 39,
10 , 30 , 1.3 , 31, le,8 , 9] .

While for A £ n > 3, the explicit geometry of W(A) is

usually complicated (e .g. M.zrnaghan [11.0], Icippenhaiin (36]), the 2 x 2

case ii surprisi ngly simple . Murnaghan [110] (comp are Donaghue [10])

has shown the following.

TEEO&~4 1.2. If

A~~~~i\0

then V(A) is the (possibl y degenerat e) elliptic d isc with fcci at

>1~)h2~ and aem1-min~r axi s ~lcx l .  
~~~~
‘

Since for any A £ ~~~~~ W(A) is invariant under unitary

similarities of A , i.e.,
~~~~~~~~~~1L

W(U*AU) = w(A) , U unitary,

/

Theorem 1.2 treats in fact the gener al. 2 x 2 case.
~~~ // /

/
For larger matrices, one can obtain ingorma tion on W(A) by ’~~~ /

_ _ _ _  
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considering inclusion domains (e.g . [43 , 33, ii) ,  or by

approximating W(A ) numerically [ 3 5 ) .

Easily verified properties of W(A) are :

W(aA ) = aw(A), a e

W( A + a I ) = W ( A ) ÷ a ;

W(A + B) c W(A ) +

a(A) ( spectrum A) c W(A )

Since W(A) is convex it also follows that

(1 .1) w(A ~ B) = conv[W(A),W(B) 1 (cony for convex hull)

and

(1.2) P(A ) E cony o(A) c w(A )

Review of these and other properties of W(A) can be found

for exenpie in [411, 36 , 5].].

2. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Associated with the numerical range is the numerical radius

r(A) n max (k t  : ~ E W(A) )

Following Ostrowski [42], we call a, mapping N :  -~ a

generalized matrix norm if for all A ,B £ and a £

11(A) > 0 , with 11(A) > 0 for A ~ 0 ;

N(aA ) = I G I N (A) ;
N(A + B ) < N ( A ) + N ( B )

If in addition N is (sub-) imi.Ltiplicative, n*Inely,

N(AB) ~ N(A )N(B)

then N is called a matrix norm.
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Having the above definitio ns one can easily prove ,.

•T1~ OREM 2.1. The numerical radius is a generalized matrix norm

The numerical radius is not a matrix norm. For example , take

A = (
~ ) °n-2 , B = 

~~ 
e °n-2

~~r Theorem 1.2 and (1.1), r (A) =r (B) = 1/2 , r(AB) =.l . Consequently

r(AB) > r (A)r(B) and r is not mult iplicative on ~~~~~~ n ~ 2.

Brown and Shields (see [115]) have considered the 4 x 4 nilpoterit

mat rix E , Eu = 
~~~~~~~~~~~~ 

showing that r(E2) = r(E3) = while

r (E) < 1 .  Thus r(E3) > r(E 2)r(E). So in genera ]. the inequality

r(AB) < r (A)r(B) may fail even when A and B are powers of the

same matrix .

What is true , however , is the following remarkable result by

Berger [ 3 ] .

THEOR EM 2.2. For any A €

r(Ak) < r k (A), k = 1,2,3, ...

An equivalent statement is that r (A) <1  implies r(A k ) < 1,

k = 1,2,3, ...
The history of Theorem 2.2 is interesting, [4]: Lax and Wendroff

(37 ] proved that r(A) < 1 , A £ implies r(Ak ) c y(n) with ~‘(n)

depending on n alone and satisfying i(n) -, ~ as n -. ~~. It vu

Halmos who conjectured that y(n) can be replaced by 1. Two special

cases followed: Bernau and Smithies ( 5 ]  showed that r(A) <1

implies r(A 2k
) < 1 , k — 1,2 ,3, ..; and , frown (83 proved the desired

1
~~

’ i~~ 22 ~
_ _ _ _ _  - ~-—.  
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result for 2 x 2 matrices. Berger [3] was the first to prove the

general case , but his proof was never published . The first published

proof is due to Pear cy [ 4 5] .

Some pr opert ies of r follow immediat ely from what we know

about W(A). For example ,

r (U*AU) = r(A), U unitary ;

r (B) < r(A), B principa l submatr ix of A ;

r (A ~ B) = max(r (A), r(B) }

It is also not hard to see that

(2.1 ) p(A) < r(A) < fl A il
where

p (A) ~ ma x( lX I  : X € o(A))

and

IIAU ~~maxfl,Ax 1 : lx i = 1)

are the spectral radius and spectral norm of A , respectively .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In (1.2) and (2.1) we mentioned the relations

P(A) c W (A), p(A) < r (A ) < hA i l

It seems natural to ask when does equality hold

Following Halmos [31], we say that A is convexoid if

P(A)

radialoid if

p(A ) =  flA~~;

-~~~~~~~~~
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spectraloid if

p (A) = r (A ) ;

and normaloid if

r(A) = h A i l

Having defined four types of matrices , an interesting result of

Wintrier (56 ] shows that in fact we have only three :

THEOREM 3.1. A is normaloid if az~d only if A is radialoid.

Thus we may drop the term “normaloid ” to avoid confusion with

“normal” matrices .

The next three theorems characterize conve,xoids, radia,loids and

spectraloids .

THEOREM 3.2. A is convexoid if aid only if any of the following

conditions holds:

(a) (Orland [41]) hl (A - ~‘) ‘hi < (diste.nce(~ ,P(A)] 1 ’, for &11

~~~ P(A).

(b) (~ iruta and Na.lcamoto [ 1 5) )  A - ~I is spect ra.loid for all

£

(o) (Jtzruta [14]) Re P(e~
9A) P(Be ei9A), 0 < 9 <  2~- .

(d) ( Johnson ( 3 4] )  A is unita rily similar to B ~ C where B

is normal and W(C) c W(B).

THEOREM 3 .3 .  A € j .s radialoid if and only if any of the

following is satisfied:

(~) 
~~~~~~~ 

(~7] )  11A
k fl — ilA l1

k
, k —

(b) (Pt A (136]) hi *~hl — II A II~~
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(c) (Goldberg and Zwas [28]) flA
2 hl = h A l l

2
; 2 any integer

exceeding the degree of the minimal. polynomial of A. ’

(d) ‘ (Goldberg arid Zwas [26]) p2(A) I - A*A is positive

semi-definite . -

(e) (PtA [11.7]) A is unitarily similar to h A i l  (U ~ B)

where U is unitary and liBhl ~
New proofs of PtA ’s interesti ng result in (b) were published

by flanders [12], Wimmer (5 4] ,  and PtA [11.7]. The result in (c) --
merely a technical improvement of PtA ‘a Theorem -- can be obtained
by a careful inspection of (12].

THEOREM 3.4 . A is spectraloid if and only if any of the

following hoi~ s:

(a) (puruta and Tak eda [16]) r (Ak ) = r~C (A) ,  k = 1,2 ,3, ” .

(b) (Goldberg, Tadmor and Zwas .(24]) r(A 2 ) = r2(A),  with 2

as in Theorem 3.3 (c).

(c) (unpublished: follows from Theorem 1, [24]) A is

similar to r (A)(U ~ B) where U is unitary and r(B) <1.

Since the degree of the minimal polynomial of an n X n matrix

never exceeds n , (b) implies that A e is spectraloid if

and only if r(A”) = r ’1(A) .  Thus , we have an analogue of Theorem

3.2 (b).

It . seems worth noting that for a general A € ~~~~~~~~~~~ 
n )  2 , the equality

r(A~
’1) =

does not guarantee spectrality. For ri — 2 the assertion is trivial ;
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for ii > ~ it was sho’wii , [25], that the n x n matrix

A di g(0,4&,].,...,l,J~)E , E~~ = 
~~~~~~~~~~~~~~

satisfies r (A~~~’) = r~~~ (A), but r(A) > 0  = p(A) .

The last result in this section describes the various inclusion

relations between the classes of n x n convexoids, radialoids,

spect ral olds , and normal matrices , denoted by Cn~ 2n ’ 
g~, 

~~~~

respectively .

THEOREM 3.5. Let c denote proper inclusion. Then

(a) ~~ = c ~~=~~2 = s ~
(b) For n = 3 , 4 l~~ = C ~~cR ~~c$~~ .

(c) h5 C C 5 CR 5
C S5

(d) ~~~ n > 6  ~~~~~~~~~~~~ ~~~~~~~~~~~~

~~~ ~~~~~~ ~~~~~~

The relations between ‘rid and are due to Moyls and Marcus

(3 9] .  The rest is due to Goldberg and Zwas [27].

11. . C-~~~~~~~~~~~~~~~
Let A , C be n x n complex matrices. Goldberg aid Straus (21 ]

call the set

W0(A) = (tr (CU*AU) U n x. n~ unitary3

the C-numerical range of A.

Evidently,

W(A) W~
(A) with C — diag(].,0, ...,0) ;
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thus W(A) is a special case of Wc(A).

The set Wc(A) can be viewed as the range of the mapping

p : ti(A) —,~~ where

t4(A) = [U
*AU : U unitary)

and p is the linear functional on defined by p (X) = tr(CX) .

That is , Wc(A) gives all the information a single functional

provides about the class 1.4(A) of matrices unitarily similar to A.

fr om thi s point of ‘vi ew , wC(A) is the ultimate generalization of

WC(A).

We remark that the above observation suggests a natural extention

of the definition of Wc(.A ) to arbitrary HUbert spaces: If T is

a linear bounded operator on a HUbert space ~ and P is a linear

fu nctional on J~
, we define the q)-numericaj . range of T to be the

set

W,(T) = (p( U*TU) : U unitary on

Clearly , A and C play a synimetric role In the definition of

Wc(A)~ 
i.e.,

Wc(A) = WA (C)

/4180, Wc(A) is invariant under unitary similarities of A

(or of C). In fact we have ((2 1 ]),

THEOREM 4.1. Wc(A) = W01 (A) for all A € if and only

if C and C’ are unitarily similar.

The remainder of this section is devoted to C-ra nges with

normal C • Since C is normal if and only if C is unitarily

~ 

- 

- -
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similar to a diagonal matrix , Theorem 4 .3. implies that we may restrict

attention to ranges of the form W , ~(A) . For conveniencediag~y1, • ‘7rv’
we set the vector c= (i1~

...~i~), arid write W0(A) instead of

We cal]. W0(A) the c-numerical ra~~~ of A.

A short calculation shows that

W0(A) _ W
diag(y ,...,~~~ 

)(A) = 
{Z ~ v~(Ax~~x~ ) : (X

j
)~~~l e

where is the set of all orthonorma]. bases of Qfl• Thus, W0(A)

depends on the e~alara 7r~
. •7 n rather than on the ordered n-tuple c.

We recall now Halmos ’ definition of the k-numerical range [3]., ~l67 ],

which aft er normalization becomes

w~(A) = (~~tr(PAP ) : P orthogonal projec tion s of rank k) , (i < k < 21) .

It is a simple matter to check that w~(A) can be written as

(11 .1) Wk (A) = , = ~(e1 + ... + ek ) ‘

where fe~ )~~1 is the standard basis of ~~~~. Thus , k-numerical ranges

are special cases of c-ranges. (Compare Fan ‘s range [51, ~8 .2].)

The main result concerning Wk (A) is due to Berger (31, ~l67 ].

THEOREM 4.2. The k-numerical range is convex.

This result was generalized for c-ranges by Westwick (53] :

ThEo~~.1 4.3. If c c then Wc (A) is convex. If c €

ri > 3, then W0(A) may fail to be convex even for normal A.

Weitwick ‘8 deep theorem avoid a the 2-dimensiona’ case

C 
~~~~~~~ 

c Q2, A c ~~~~~~~~ In this case Goldberg aid Streus (21]

have shown that
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w0(A) = (v~ 
- 72)W~~ + 

~2 tr A

Applying Theorem 1.2 , we find that Wc(A J is an elliptic disc with

foci at

+ ~~~~ ~l~2 +

where X~,X2, are the eigenva].ues of A.

~tthat is the shape of Wc(A) for c c ç,
’
~, n ~ 3? E. G. ~traus

conjectures that W0(A) is star-shaped with respect to 
~~ 

tr A --
a point which always belongs to Wc(A)~ 

This conjecture was verified

for n = 3 (unpublished).

The shape of W0(A) for non-norma]. C is an open question.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

An interesting result concerning k-numerical ranges was pr oved

by Fillmore and WIlliams [11].

THEOREM 5.1. For any A €

(~~tr A) = W (A) cW ~~1(A) C.- . . .  c W1(A) = W(A )

In thi s section we present some gener alizations of Theorem 5.1 ,

due to Goldb erg and Strau s [21].

DEFINiTIONS. (a) For vectors c ,c ’ € ~~~~, we write c < c ’

if there exists a doubly stocha stic matrix S such that c = Sc ’.

(b) The vector c is obtained from c ’ by pinching if two

components 7~~~7~j 
of c ’ are replaced by with

y1 =ay~ + (1-a)y~ , ( l-a )v~ +a y~ , 0 ~~a < l
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while all other components of c ’ remain unchanged

(c) We write c ~~< C ’ if c is obtained from c ’ by a

finite succession of pinchings.

Note that the relations c < c ’ and c ~ < c ’ are invariant

under permutations of the components 
~ i’• • • ’~ri~’ fy ~ , ... ,y ’).

A less trivial remark is that e ~ < c ’ implies c < c ’ but

not conversely .

Having the above preliminaries we state ,

THEOREM 5.2. If c ,c ’ € ~~~~~~ then

(a) c ~4< c ’ implies

W0(A) c W 0 1( A ) VA

(b) We have c < c ’ if and only if

W
~(A) ~~conv W0 1(A) VA e

~~r Theorem 4.2 , W0 1(A ) may fail to be convex , so we may not

replace cony W0 ,(A) by W0 1( A) .

Given vectors c ,c’ c ~~~~~~ it is usually difficult to check

whether c < c’ or c 4( c ’ . For real vectors , however , the situation

simplifies considerably .

DEFINITION. A real vect or c (7l~~w~7n) Is called ordered if

(5 1) 
~~~~ ~~~~~ ~~ ~~ ~

‘n

THEOREM 5.3. If c = (v~)~ c = (y~ ) are ordered n-vectors,

then each of the relatj ons c < c’, c 4< C ’~ is equivalent to

k k .

~~ 
73 j  — 1,2, ”,n

41_i i_i
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fl w0(A) = (01
Ac~~~~

More results in this vein are found in (20, 21, 22].

Inclusion relations for general C-ranges are unknown to us.

6. c-~~~~~~~~~~~~ j

As in the classical case , we associate with the C-numer ical

range the C-numerical radius of A ,

r~(A) ~~mnx[kl : ~ € W0(A) i

Naturally, if W0(A) ia a c-range or a k-range, the corres-

ponding radius is denoted by r
~
(A) or rk(A), respectively.

We begin by utilizing some of the inclusion rel at ions obtained in

the previous section.

Obviously , if W0(A) c W 0 ,(A) or even if W0(A) c coriv W0 ,(A),

then r0(A) < r0 4( A),  although the converse may fail to hold . Thus ,

Theorem 5.2 (b) yields:

ThEOREM 6.].. If c ,c ’ € satisfy c < c ’ then

r~ (A) ~ r~ ,(A) VA £

Since 4< implies <, then this is all we obtain from Theorem 5.2.

Similarly , from Theorem 5.1 and Corollary 5.6 we have,

COI~)LLARY 6.2. (a) The k-numerical radii satisfy

~ ltr A~ = r
21

(A ) < ... <r1(A) = r(A ) VA £

(b) For C = ( 7 j ) € ~~~ w~~ii E41 v41 -a ,

t_________________________ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I
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with equality for k = n (compare [29]).

REMARK 5.4. (a) Since o < c ’ and c 4< c ’ are invariant

under permutations of the and 73~ Theorem 5.3 implies that for

arbitrary vectors c ,c ’ € the relations c < c ’ and c4< c ’

are equivalent .

(B) By the same argument, given c ,c ’ £ one may first

rearrange the ~~~~~ to satisfy (5.1), then apply Theorem 5.3 to

determine whether c < c ’ or not.

Theore m 5.2 (a) and Remark 5.4 (a) immediately Imply,

THEOREM 5.5. If c ,c ’ c ~~~~~
, then c < c ’ if and only if

W0(A) ~~w0 ,(A ) V A €

By Theore m 5.3, the vector s Ck , 1 ~ k ~ n, in (4 .2) satisfy

C < C~~~1 
< • •.  ‘ < C

1

Thus, Theorem 5.1 follows immediately from Theorem 5.5.

FInall , using Theorem 5.5, 5.3, and Remark ~.4 (b), it is not

hard to obtain,

COROLLARY 5.6. (a) If c = (V j ) £ with E
,~ = ~~~ then

(a/n,...,c~/n) < c, and hence

(~~tr A )cW (A) VA € ~~~~~ .

(b) ~~ 7~ 20, then a < (c*,0 , ...,o); ~~~

• w0(A) cc~w(A) , ‘~‘A €

(c) c t — o ,
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-~~- 1tr A~~< r0(A) V A € Q ~,~~ ;

and if 7~~> O ~ then

r~ (A) < ar(A ) VA £

In the remainder of the sect ion we discuss results , due to

Goldberg and Straus [23], concerning the norm properties of the

mappi ng

: Q~~ 
—,

~~~~

Since for ri = 1 the situation is trivial , we assume from now on

that n > 2 .

It Is easy to see that rC is a semi-norm, that is , for any

A ,B € and a

rC(A )>O ;

r0(aA ) = Ia Ir C(A) ;

r~(A + B) < r C(A) + r0(B) .

The following result characterizes those C for which r0 is

positive definite , i.e •, r0 is a generalized matrix norm .

THEOREM 6.3. r0 is a generalized matrix norm if and only if

C is not a scalar matrix and tr C ~ 0.

In particular, since the classical radius is generated by

C diag (1,O,...,O), Theorem 6.3 implies Theorem 2.1.

HEWiRK 6.4 . For a = (v s ) € we have

— rdieg(v , ..., v ) (A) .
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Thus, by the last theorem , r~ is a generalized matrix norm if and

only if not all the are equal and E1,~ Yj ,~ 0.

The multip licativity of rC Is a much more complicated question

to which we have a theoretical answer:

THEORE~4 6.~ . A generalized matrix norm N is a matrix norm

if and only if

(6.1) max(w(AB) : 71(A) — 71(B) 1) <1

In practice , however , Theorem 6.5 offers limited help since

in general , v71 is not available .

A different approach to multiplicativity is the following . Given

a generalized matrix norm N , aid a constant v > 0, we imediately

observe that

11 ~~vN
V

is a generalized matrix norm too . If the new norm N~, is multiplica-

tive we say that v is a niultiplicativity factor for N.

It is not hard to see that y  is a multiplicat ivity factor for

N if and only if v 2 where v71 is given in (6.1). Bit again,

the difficulty in obtaining v71 for C-numerical radii renders thi s

result useless . The only case in which v71 was found (not via (6.6)

though) is the following.

THEORP24 6.6. For the classical radius we have = 4; i.e .,

yr is a matrix norm if aid only if V > 11.

A more practical way to obtain ualtiplicativity factors ii

suggested by a th orem of Gastinel (18) (originally in (17]).
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THEOREM 6.7. Let N be a generalized matrix norm, M a

matrix norm, and ,~ > ~ > 0 constants such that

~s(A)~~~N(A)~~ ‘~i(A), VA €

Then, a~~ v with v>~ / ~
2 is a multiplicativity factor for N,

i.e ., N
~ ~ 

vN is a matrix norm.

Taking M to be the spectral norm, Gastinel ‘s theorem was

useful in obtaining multiplicetivity factors for c-radii , c €

THEOREM 6.8 . (a) ~~~ c = (V j ) be a real n-vector such that

not all the 7~ are egu~]. and E~ ~ 0. Denote

U 
~~~ 

‘ ~~ 
, B — max -

3=3. 41=1 i,i
Then for any v with

~~~

the numerical radius 
~
‘2’c ~ rvc is a matrix norm on

(b) If the 7~ are of the same sian (> 0  ~~ < 0), then

vr
~ 

B is a matrix norm for any

16av >— .
B

Note that for 7~ of the same sign,

f a x + B \2 16a

hence in this case , (b) is a stronger result than (a).

By I~mark 6.4 we observe that Theorem 6.8 provid.. sultiplicativity

factor. only for those a for which r0 ii a generalized ~~trix

- -
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norm. This is consistent with the fact that indefinite non-trivial

semi-norms have no mu].tiplicativity factors at a]]..

Finally, apply Theorem 6.8 (B) to the vectors Ck in (li .i),

which generate the k-numerical radii rk .  We find that Yrk,
1. < k  < n  -1 , is a matrix norm on if v > 16k2. Thus , the

smallest mu].tiplicativity factor Theorem 6.8 provides for the classi-

cal radius r ~ r1 is v = 16, which is far off the least ciu.ltipli-

cativity factor Vr = 4 given by Theorem 6.6 . In this light it

seems worthwhile to improve Theorem 6.6 , as well as to obtain

mu].tiplicativity factors for C-radii with general C.
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